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Abstract. Phase transitions in a hvo-dimensional q-state Pott’s model with long-range disorder 
in which the carrelation decays as a power law - for separation r are studied analytically 
wilhin a Migdal-Kadanoff renormalization group. Correlation terms are introduced into the 
parameter space of the renormalization group and the recursion relations are derived. We expand 
q near qo, where the specific-heat exponent of the pure system up vanishes, and a nem d = 2. 
For small clp and d = 2 - a  cC I, we find three fiwd points: ‘pure’, ‘short-range disorder’ and 
‘long-range disorder’. In our calculation the disorder is relevant if nv -2  c 0 for a d, when 
the v are the correlation-length exponents of the fixed points. The correlation-length exponent 
for the ‘long-range disorder’ fixed point is Y~~~ = 2/a.  These are consistent with field-theoretic 
renormalization group results. 

1. latroduction 

Phase bansitions in systems with long-range disorder have been a subject of experimental 
and theoretical interest over the past decade [I-31. A simple but useful method for studying 
the critical properties of disordered systems is the Migdal-Kadanoff renormalization-group 
approach [ G I .  A lot of work has been undertaken to study disordered systems within the 
Migdal-Kadanoff approach [3,7,8]. The simplest models of disordered systems are defined 
by the probability distribution of nearest-neighbour interactions. Using the Migdal-Kadanoff 
method one can write the equation for renormalizing this probability distribution. Though 
it is an inherently uncontrolled approximation, it often yields qualitative insights and can 
be directly applied to the physical dimensions. Demda and Gardner [8] have analytically 
studied the Potts model on a diamond hierachical lattice with random interactions by weak- 
disorder expansion. In fact, in their consideration the disorder is short-ranged. Extending 
their approach to the long-range disorder case we studied the critical phenomena of the 
random-Pons model on a two-dimensional lattice. 

We are concerned with Pott’s model on a two-dimensional lattice where the random 
nearest-neighbour interactions are distributed according to a given probability distribution 
and the correlation of the interactions falls off with distance as a power law - r-‘. 
Correlation terms are introduced as the probability distribution is renormalized. The 
recursion relations of the correlation terms and the moments of the probability distribution 
are derived. For a small specific-heat exponent of the pure system up and 6 = 2 - a, 
we calculate analytically the fixed points and their exponents in powers of up and 6. The 
relevance of the disorder is consistent with the extended Harris criterion [SI. 

In section 1, we introduce the model. We derive the recursion relations of the moments 
and the correlation terms of the probability distribution in section 2. In section 3, we 
calculate the fixed points for small 01 and 6. 
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Figure 1. The diamond lattice is conslrucled recwsively. One starts wiul one bond (a). To go 
from (a) to (b) one must replace this bond by a set of four bonds. To go from (b) to (c) one 
must replace each bond in (b) by a set of four bonds, and so on. The order in renormalization 
bansfomtion is i n v e a d  (a) next generation; (b)  present generation; (c) last generation. 

2. Definition of the model 

The Hamiltonian of the q-state Potts model on a two-dimensional square lattice with long- 
rangecorrelated nearest-neighbour interactions is 

(1) 

where the spins U; can take q different values and the sum runs over all pairs of nearest 
neighbours. The interactions .I;.., are dishibuted according to a given probability distribution 
and are long-range correlated in space. It is convenient to work with a variable K on each 
bond defined as 

(2) 

Accordingly, the variable K is distributed randomly and correlated in space. In OUT 
consideration, the correlation of the variable K decays as a power law with the distance 

K = ePJii , 

6 K ( ~ 1 ) 6 K ( ~ z )  - ]TI -+2l-" (3) 
- 

where a > 0 and ~ K ( T I )  = K ( T I )  - K ( r 1 )  and -represents the average of '. . .' over the 
space. 

Migdal's recurrence relation on a d-dimensional lattice may be derived by dividing the 
system into hypercubes of bd spins, moving all the bonds onto the edge of the hypercubes 
and then decimating all except the comer spins [6]. A hypercube may be called a cell. After 
renormalization the lattice retains the geometrical symmetry and the cell's size is extended 
b times. By rescaling, the cell's size can be taken to be of unit length. 

The Migdal-Kadanoff approach is equivalent to an exact decimation on a hierachical 
lattice [IO]. The decimation on a diamond hierachical lattice, which is often used to study 
disordered systems, is shown in figure 1. From the present generation to the next, each set of 
four bonds KI, K z ,  K, ,  K4 can be replaced by one single bond K' and the renormalization 
transformation is [SI 
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After a decimation, the probability distribution P(K') for the next generation can be 
deduced from P(K) at the present generation 

where P ( { K j ] )  is the united distribution since the bonds {Ki) are correlated. ?he united 
distribution of any two bonds K' at the next generation is 

(6) 

where the superscript ' j '  labels the j th  cell at the present generation. One can study the 
critical behaviour of disordered systems according to transformations (4)-(6). 

Here we give some results for a pure system [SI which will be used in the following. 
For a given value of q. the critical point is 

which huns out to be q = (& - 1)(& - 1) and the specific-heat exponent is given by 

The value of q when or, vanishes is go = 4 + 2 4 .  

3. Recursion relations 

We studied the renormalization transformations (5) and (6). by considering a narrow 
distribution concentrated around the fixed point K,. By writing 

Ki = K, + & j  K'= K,+E) (9) 

one can expand E' in powers of ~i using formula (4). We have expanded E' up to the fourth 
power and the result is 

E' = 4A&&i - 4AB&&T + (2B& - 4AR& + 4A2)&i&j 

+ ( 1 2 A B ' K  - 48' - 8A2B)&i&; +4AB2&~: + (4AB - SA2B)~i&j&~ 

+ ( 4 B ' a -  I2AB'& 4- 4A2B')$~; - (12AB2 - 32A2B2)&iEjEf 

+ (4B2&- 16AB3& + 8A2B2)&i~j + (B2  - 4AB2 + 4A2B2)&iEj&k&i 

- 4AB3&&7 (10) 
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where A ,  B are given by 
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A = &/(&+ 1)’ B = I/[(& - I)(&+ 111 

and i, j ,  k, 1 = 1,2,3,4 and i # j # k # 1. These subscripts label the different bonds in a 
cell rather than summation. The repeat times are taken into account in the coefficients. The 
powers of E’, such as E”, E ‘ ? , .  . ., can also be expanded in powers of E ~ .  We do not give 
these expressions explicitly here because they are rather long and complicated and can be 
obtained directly. 

The moments of the probability P ( K 3  axe obtained by averaging the powers of E‘,  

where one finds multibody terms such as -,-. Writing 

(11) E ;  = 2 -k 6 E ;  

one has 

(12) 

One can see that on the original lattice the correlation of s i  takes the same form as 

(13) 

- 
EiEj  = -8 - BEiSEj. 

__ 
We need to treat the correlation terms between bonds in a cell such as S E ~ S E ~ .  

in (3) 

~ E ( T I ) ~ E ( T ~ )  - I P I  - T z I - ‘ .  

Since the separations between bonds in a cell are about a cell’s size, we define a variable 

AI = S E ( T ~ ) ~ E ( T Z )  (TI - r2 = a cell’s size) (14) 

at each generation. In fact A I  is the coefficient of the right-hand - side of equation (13) as 
the cell’s size is scaled to be a unit length. Thus we have G E ~ S E ,  = AI in equation (12). 
Similarly, we can define other correlation terms with high powers of E .  In our calculation 
we use two other variables Az and A3 defined by 

Az = ~ E ( T I ) S E ~ ( T Z )  A? = S E ( T I ) ~ E ~ ( T Z )  (TI - TZ = a cell’s size). (15) 

The average of the multiband terms, such as w, can be treated according to 
definition (11) and the approximation that the distances between bonds in a cell are the 
same and equal to one, that is EiEjEk = Z3 + 3HAj + S E ~ S E ~ S E ~ .  The last term will be 
discussed in the following. 

Now the parameter space is extended in comparison with the short range case [SI. In 
order to obtain the recursion relations for the correlation terms, we consider the correlation 
of E’ after a step of renormalization at two different positions T I  and r2 

S&’(Tl)BE’(TZ) = E‘(Tj )E’ (T’ )  -T2. 
Substituting equation (4) into this equation yields 
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where we have included only some typical terms which need to be discussed. 
On the original lattice the correlation of E decays as a power law with the separation. It 

is expected that the correlation of E' after renormalization retains the same decaying form. 
From the definition of A I  and equation (13) one can see that the first term on the right-hand 
side of equation (16) is 

The third and fourth terms on the right-hand side of equation (16) are 

- At + B E ~ ( T , ) S E ~ ( T ~ ) S E ~ ( T ~ ) S E ( ( T Z ) .  (1% 
For a general Gaussian disfibution, which can describe random variables in many 
natural systems, the average of multi-variables such as S ~ i ( ~ l ) S ~ j ( r l ) S ~ ( r z )  and 
S E ~ ( ( T ~ ) B E ~ ( T I ) S E ~ ( ~ Z ) ~ E I ( T Z )  can be obtained from Wick's theorem [Il l .  MI such terms 
with an odd number of factors are zero and those with an even number are given by the 
sum of the products of all possible pairs. In our case 

(20) SEi(TI)8Ej(TI)6E(T2) = s E ~ ( r ~ ) s E j ( T ~ ) S E ~ ( r ~ )  = 0 

( r l ) S ~ j  ( T I P E ~  ( r d h  (TZ)  = SEI. (TI  SE^ (TI) ( T Z ) ~ ( T Z )  

+ S E ~ ( T I ) ~ E X ( T Z ) ~ E ~ ( T I  ) ~ E I ( T Z )  + Ssi(Tl)SEf(rz)BEj(rl)SEx(rz) 

As can be seen from the right-hand side of equation (19), some terms retain the decaying 
form r-" and some do not. Although this is a bit disturbing, it can be overcome. We 
neglect the terms with higher-decaying exponents such as rFz0 in equation (21) because it 
falls off faster than r -@.  The first term in equation (21) is cancelled in equation (19) 

According to definition (14), A', is equal to the correlation of two bonds K' with a 
separation of a cell's size at the next generation, therefore, we can obtain A', by letting 
[TI - ~ 2 1  = b = 2 in equation (16) where we think that the distances between bonds in 
two neighbouring cells are approximately the same and equal to b = 2. Although the 
approximation is rough, it is plausible since critical properties do not depend on fluctuation 
over small scales. We expect that it can keep important information about the critical 
problem. Thus we have 

A'= -{16A2KcAj - 32AZBKcA2+ 16A&(2B&-4AB&+4A2)ZAl 
1 

29 

+ 4(2B& - 4AB& + 4A2)2Z2A~ -k,,  .). (22) 

Now, all the terms in the recursion relations are well defined and can be obtained directly. 
In order to get a truncation o f  the recursion relations, one can multiply each cumulant 

and correlation term by some power of a small number A and retain terms o f  a given order 
at each step in the calculation. Of course, the truncation scheme should be self-consistent. 
We refer the reader to [8] for a more detailed discussion of the truncation scheme. 
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4. Fixed points for small a,, and 6 

In [SI, the authors consider the cases for small up and study the relevance of the disorder. 
The sign of the specific-heat exponent of a pure system up determines the stability of the 
pure fixed point. Weinrib and Halperin [9] have studied a long-range disordered modo1 
using scaling arguments and a field-theoretic renormalization group. They showed that for 
a < d, the long-range disorder will lead to a new requirement for the stability of the pure 
fixed point. Therefore, we study the relevance of the disorder in our model for small up 
and a near d = 2. 

For a value of q which is close to qo = 4 + 2 f i ,  i.e. q - qo << 1, the specific-heat 
exponent of the pure system up and K,(q) satisfy (see equations (7) and (8)) 

X T Wu and 2 Q Huang 

K&) - K&o) = $(10+7&)upln2. (23) 

For a near 2, one can introduce a small number 6 = 2 - a .  
We consider the cases up - 6 - A, where h is a small number. For small up and 6 we 

find three fixed points for which the cumulants are in powers of up and S. We calculate 
the fixed points and their exponents to the Ath order. A self-consistent truncation of the 
recursion relations is given by 

e‘ = (2 + upln2)S+ i (4  - 3&)?+ (6+4&)E2 t ( 6 + 4 f i ) A l  + $(113 -SO&@ 
- 

+ k(734-519&!)7’++(17- 12&)7+$(140-99&)2 (24) 

+ ~ ( 3 7 9 - 2 6 8 & ) 7 + $ ( 4 - 3 & ) ~ + i ( 5 1  -36&)2 (25) 

- 
& ~ = ( l + u p l n 2 ) 2 + 3 8 ’ + 3 A ~ + ~ ( 3 6 - ~ & ) 8 2  

A‘, = [1+ (up + 6 )  ln2]A1 + 4(4 - 3&)A2 + (12 - S.J;i,SA, 

+~(113-8O&)~A1+$(17-12&)A3+clA~ (28) 

(29) 

(30) 

where c1. cz, c3 are constants. In order to solve the long-range-disorder fixed point the terms 
of A: are needed; however, their coefficients are not important in ow calculation. The fixed 
points are obtained by letting = F and Ai = Ai. We find three fixed points: ‘pure’, 
‘short-range disorder’ and ‘long-range disorder’. The ‘pure’ fixed point is 

Ai  = +A* + 3ZAl + $(36 - 25&)sAl+ a(4 - 3&)A3 + C ~ A ;  

3 - - 1 4A3 + + c ~ A :  

- 
E“ = 0 At =O. (31) 

The ‘short-range disorder’ fixed-point is 
- 

8 =  $(44+31&)upln2 ~2=f(362+256&)u~Ln2 
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and the 'long-range disorder' fixed-point is 

- 
Z = +(IO + 7&)(S + cyp) In 2 E* = (41 + 29&)(S + cy,) In 2 

- -  
E' - s4 - Ai - O(h*). (33) 

Taking E" and A; as the components of a vector (wi], the exponents of the fixed points can 
be obtained from the eigenvalues of the matrix whose elements are 

(34) 

where w* is the position of the fixed point. The three maximum eigenvalues of each fixed 
point are given in table 1. 

Table 1. The three maximum eigenvalues of Lhe fixed points 

Fixed points h~ hz A3 

I+(arp+8)ln2 Pure . 2 t npln2 l+cl,l"2 
Short 2+(1n2/7)(1 -2Ji )ar ,  1 -uPln2 1 + [6 + 4 ( I  - Z-h)arplIn2 
Long 2 - 6 l n 2  1-[(2--h)arp+(3--h)811n2 I 

The exponents of a fixed point are given by 

In 2 
In hi 

V '  - -, I -  (35) 

The correlation-length exponent for a fixed point is the maximal exponent. If any exponents 
of a fixed point, except the thermal one, are negative they will conwol the critical behaviour. 
We call it a stable fixed point. A summary of the regions where the various types of critical 
behaviour occur, for small up and 6 ,  is given in figure 2. 

Flyre 2. Resons m the 6-0~ plane uhere v ~ o u s  
types of cntical behaviow occurs. Here 6 = 2 - U  

ana U,, is thc spccific hex cxponenr of the pure system. 
The ciossovc~ OCNIS rvhcn a" - 2 becomes ncgatiw. 
where Y LS !he correlalion-length exponenc vpm. ",hen 
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From table 1, one can see that there exists a crossover from the ‘pure’ fixed point to 
the ’short-range disorder’ fixed point when up > 0 and the crossover exponent is up. We 
recover Derrida’s results for the short-range disorder case [81. For 6 > 0, the ’pure’ fixed 
point is unstable when 

aP+6 = (2/vpuE) - a  > 0 

and the ‘long-range disorder’ fixed point is unstable when 

(36) 

to the order A. That is, for a c: d, the long-range disorder is irrelevant if 

a v - 2 > 0  (38) 

where U is the correlation-length exponent of the fixed points ‘pure’ and ‘short-range 
disorder’. For up f 6  > 0, the ‘long-range disorder’ fixed point is physically and marginally 
stable (note hs = 1 for the long-range-disorder fixed point in our calculation). Its correlation- 
length exponent is 

In 2 2 
ln(2-61n2) a 

= - + O[A2]. Yong = (39) 

This is consistent with scaling arguments and field-theoretic results [9] .  
Since the Migdal-Kadanoff approach can be applied to the physical dimension, it would 

be interesting to use the model described in this paper to study the three-dimensional case. 
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